Space Travel Transportation 2014 Documentary
To be spacefaring is to be capable of and active in the art of space travel or space transport, the operation of spacecraft or spaceplanes. It involves a knowledge of a variety of topics and development of specialised skills including (but not limited to): aeronautics; astronautics; programs to train astronauts; space weather and forecasting; ship-handling and small craft handling; operation of various equipment; spacecraft design and construction; atmospheric takeoff and reentry; orbital mechanics (aka astrodynamics); communications; engines and rockets; execution of evolutions such as towing, micro-gravity construction, and space docking; cargo handling equipment, dangerous cargoes and cargo storage; spacewalking; dealing with emergencies; survival at space and first aid; fire fighting; life support. The degree of knowledge needed within these areas is dependent upon the nature of the work and the type of vessel employed. "Spacefaring" is analogous to seafaring.
Presently there has never been a crewed mission outside the Earth-Moon system (so far as the human inhabitants of planet earth are concerned). However, the United States, Russia, China, and European Space Agency countries have plans in various stages to travel to Mars. (See Manned mission to Mars.)
Spacefaring entities are commonly nations. Spacefaring nations are those capable of independently building and launching craft into space. Although, a growing number of private entities are achieving space travel, largely suborbital
New-generation launch vehicles
The program's primary emphasis is on technologies for third generation reusable launch vehicles (RLVs) within an operational time frame of the year 2025. I lowering the price tag to $100 per pound by 2025, developing space transportation systems are to be safer by a factor of 10,000 compared to present day launch vehicles. These true space liners of the future could take off from aerospace ports accommodating both air and space vehicles. As the next step beyond NASA's X-33, X-34ight demonstrators, these advanced technologies would move space transportation closer to an airline style of operations with horizontal takeoffs and landings, quick turnaround times and small ground support crews.
Third generation launch vehicles — beyond the Space Shuttle and "X" planes — are founded on various cutting-edge technologies, such as advanced propellants that pack more energy into smaller tanks and result in smaller launch vehicles. Advanced thermal protection systems also will be necessary for future launch vehicles because they will fly faster through the atmosphere, resulting in higher structural heating than today's vehicles.
Another emerging technology – intelligent vehicle health management systems – could allow the launch vehicle to determine its own health without human inspection. Sensors embedded in the vehicle could send signals to determine if any damage occurs during flight. Upon landing, the vehicle's on-board computer could download the vehicle's health status to a ground controller's laptop computer, recommend specific maintenance points or tell the launch site it's ready for the next launch.[2]
Oxygen-air-breathing propulsion
The Advanced Space Transportation Program is developing technologies for air-breathing rocket engines that could help make future space transportation like today’s air travel. In late 1996, the Marshall Center began testing these radical rocket engines. Powered by engines that "breathe" oxygen from the air, the spacecraft would be completely reusable, take off and land at airport runways, and be ready to fly again within days.
An air-breathing engine – or rocket-based, combined cycle engine – gets its initial take-off power from specially designed rockets, called air-augmented rockets, that boost performance about 15 percent over conventional rockets. When the vehicle’s velocity reaches twice the speed of sound, the rockets are turned off and the engine relies totally on oxygen in the atmosphere to burn the fuel. Once the vehicle’s speed increases to about 10 times the speed of sound, the engine converts to a conventional rocket-powered system to propel the vehicle into orbit. Testing of the engine continues at General Applied Sciences Laboratory facilities on Long Island, N.Y.
Other advancements[advexon]
Along with air-breathing propulsion, there is also magnetic levitation, highly integrated airframe structures that morph in flight, and intelligent vehicle health management systems are some of the other technologies being considered for a third generation RLV.
The ASTP is also investigating technologies for a fourth generation reusable launch vehicles that could be operational in the 2040 time-frame. The goal is to make space travel safer by a factor of 20,000 and more affordable by a factor of 1,000, compared to present day systems. Routine passenger space travel is envisioned for this fourth generation RLV.
Accessible outer space
As access to outer space improves and becomes routine, this will enable new markets to open up. This includes space-based adventure tourism and travel, along with space-based business parks. Other types of benefits to commerce and the global population includes solar electric power beamed from space to Earth, space-based hospitals for treatment of chronic pain and disabilities, mining asteroids for high-value minerals, and a world-wide, two hour express package delivery system.[1]
Beyond Earth's orbit
The ASTP is developing technologies to decrease the trip times and reduce the weight of the propulsion systems required for planetary missions - including riskier missions to the edge of our solar system and beyond. Some of the technologies under development to accomplish these goals are electrodynamic tethers, solar sails, aeroassist and high-power electric propulsion (ion thruster) are just a few of the technologies being developed to achieve the goals.[1]
The ASTP is also conducting fundamental research on the cutting edge of modern science and engineering, including fission, fusion and antimatter propulsion, and breakthrough physics theories that might enable thrusting against space-time itself and faster-than-light travel.
Post a Comment